Avaliação de desempenho de controladores preditivos multivariáveis

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Santos, Rodrigo Ribeiro lattes
Orientador(a): Sotomayor, Oscar Alberto Zanabria lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Pós-Graduação em Engenharia Elétrica
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/handle/riufs/5044
Resumo: In advanced process control, the Model Predictive Control (MPC) may be considered the most important innovation in recent years and the standard tool for industrial applications due to the fact that it keeps the plant operating in the constraints more profitable. However, like every control algorithm, the MPC after some time in operation rarely works as originally designed. Thus, to preserve the benefits of MPC systems for a long period of time, their performance needs to be monitored and evaluated during the operation. This task require the presence of reliable and effective tools to detect when the controller performance is below of the desirable, to define the need, or not, of recommissioning the system. Thus, the objective of this work is development of techniques for monitoring and evaluating the performance of multivariable predictive controllers, being developed two new tools: LQG benchmark Modified and IHMC benchmark. The results obtained from numerical simulations were satisfactory and consistent with the technical literature applied in the developments of the evaluators, which were used in the monitoring of the control system MPC of the oil-water-gas three-phase separation process, offering an appropriate solution and providing subsidies for implementations in real industrial systems.