Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Oliveira, Rafael Santos de
 |
Orientador(a): |
Silva, Felipe Leite Coelho da
 |
Banca de defesa: |
Silva, Felipe Leite Coelho da,
Silva, Edilson Marcelino,
Leão, William Lima |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural do Rio de Janeiro
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Modelagem Matemática e Computacional
|
Departamento: |
Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://rima.ufrrj.br/jspui/handle/20.500.14407/20028
|
Resumo: |
O setor industrial é o maior consumidor de energia elétrica no Brasil, tornando o plane-jamento energético fundamental para seu desenvolvimento. Neste contexto, a previsão e análise do consumo de energia elétrica podem contribuir para tomada de decisões relacionadas aos investimentos no setor industrial. Este trabalho tem como objetivo avaliar a capacidade predi-tiva dos modelos univariados Holt-Winters, SARIMA e de regressão dinâmica com as variáveis regressoras do PIB (Produto Interno Bruto) e do IPI (Imposto Sobre Produtos Industrializa-dos), multivariado VAR (Vetores Autorregressivos) e de redes neurais autorregressivas (NNAR) e perceptron multicamadas (MLP) com variável regressora do PIB para prever o consumo de energia elétrica no setor industrial brasileiro. Além disso, foram realizadas combinações entre os modelos de previsão utilizados. Os resultados mostraram que o modelo MLP apresentou a melhor capacidade de ajuste para todos os cenários. Com relação a capacidade preditiva de cada modelo para cada cenário, o modelo de regressão dinâmica foi o mais eficiente para a previsão do primeiro cenário, o modelo com a configuração 2 (média aritmética dos modelos NNAR e Holt-Winters) foi o que obteve a melhor acuracidade no segundo cenário, o modelo Holt-Winters apresentou a melhor capacidade preditiva no terceiro cenário e para o último cenário o modelo NNAR foi o que obteve a melhor capacidade preditiva. Para verificar qual modelo apre-sentou melhor capacidade preditiva dentre o grupo de modelos propostos, foi utilizada a média aritmética simples entre os quatro cenários e o modelo que obteve, em média, a melhor acura-cidade foi o modelo Holt-Winters. Além disto, foi investigado as inter-relações e causalidades entre as variáveis do IPI e do consumo de energia industrial. |