Combinando previsões do consumo de energia elétrica do setor industrial brasileiro por modelos de series temporais e de redes neurais

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Oliveira, Rafael Santos de lattes
Orientador(a): Silva, Felipe Leite Coelho da lattes
Banca de defesa: Silva, Felipe Leite Coelho da, Silva, Edilson Marcelino, Leão, William Lima
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de Pós-Graduação em Modelagem Matemática e Computacional
Departamento: Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://rima.ufrrj.br/jspui/handle/20.500.14407/20028
Resumo: O setor industrial é o maior consumidor de energia elétrica no Brasil, tornando o plane-jamento energético fundamental para seu desenvolvimento. Neste contexto, a previsão e análise do consumo de energia elétrica podem contribuir para tomada de decisões relacionadas aos investimentos no setor industrial. Este trabalho tem como objetivo avaliar a capacidade predi-tiva dos modelos univariados Holt-Winters, SARIMA e de regressão dinâmica com as variáveis regressoras do PIB (Produto Interno Bruto) e do IPI (Imposto Sobre Produtos Industrializa-dos), multivariado VAR (Vetores Autorregressivos) e de redes neurais autorregressivas (NNAR) e perceptron multicamadas (MLP) com variável regressora do PIB para prever o consumo de energia elétrica no setor industrial brasileiro. Além disso, foram realizadas combinações entre os modelos de previsão utilizados. Os resultados mostraram que o modelo MLP apresentou a melhor capacidade de ajuste para todos os cenários. Com relação a capacidade preditiva de cada modelo para cada cenário, o modelo de regressão dinâmica foi o mais eficiente para a previsão do primeiro cenário, o modelo com a configuração 2 (média aritmética dos modelos NNAR e Holt-Winters) foi o que obteve a melhor acuracidade no segundo cenário, o modelo Holt-Winters apresentou a melhor capacidade preditiva no terceiro cenário e para o último cenário o modelo NNAR foi o que obteve a melhor capacidade preditiva. Para verificar qual modelo apre-sentou melhor capacidade preditiva dentre o grupo de modelos propostos, foi utilizada a média aritmética simples entre os quatro cenários e o modelo que obteve, em média, a melhor acura-cidade foi o modelo Holt-Winters. Além disto, foi investigado as inter-relações e causalidades entre as variáveis do IPI e do consumo de energia industrial.