Protocolos que desafiam o apetite ao sódio: alterações hidroeletrolíticas, cardiovasculares e moleculares

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Monteiro, Lívia da Rocha Natalino lattes
Orientador(a): Reis, Luis Carlos lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciências Fisiológicas
Departamento: Instituto de Ciências Biológicas e da Saúde
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://rima.ufrrj.br/jspui/handle/20.500.14407/11391
Resumo: A regulação constante do balanço de água e sódio é essencial para a manutenção da vida. Desde os organismos mais simples até os mais complexos, a conservação de tais elementos em níveis adequados constitui ponto crucial para a homeostase do indivíduo. Para tanto, os organismos lançam mão de uma série de mecanismos neuro-humorais que regulam a todo momento o conteúdo de água e sódio corporal. Nas últimas décadas, estudos sobre mecanismos neurais envolvidos na regulação do apetite ao sódio têm ganhado destaque, uma vez que o consumo exagerado de cloreto de sódio está diretamente relacionado a alterações funcionais que podem gerar doenças como a hipertensão arterial. Além do alto consumo diário de sódio pelas sociedades ocidentais, há também um crescente número de casos de hipertensão arterial, particularmente do tipo denominado sal-sensível. Assim, é necessário que os mecanismos envolvidos nessas alterações sejam intensamente estudados em modelos científicos. Desta forma, através do uso de modelo animal, investigamos neste trabalho as alterações funcionais advindas da modificação do conteúdo de sódio presente na dieta dos animais. Para tanto, ratos Wistar machos foram randomicamente divididos em 4 grupos experimentais: i) controle (CTRL); ii) dieta pobre em sódio (DP); iii) furosemida (FURO); iv) sobrecarga salina (SS). A partir desta divisão, traçamos os perfis hidroeletrolítico, cardiovascular e molecular desses paradigmas de desafio ao balanço hidroeletrolítico. Verificamos que a dieta hipossódica e a furosemida foram capazes de induzir o apetite ao sódio de forma sustentada até 4 horas após reapresentação de fluidos (DP 4,1 ± 0,8 de peso corporal; FURO 8,5 ± 1,0 vs. CTRL 0,15 ± 0,08 mL/100g; p<0,05). Confirmamos a ocorrência de hipernatremia a partir da sobrecarga salina (SS 163,7 ± 1,6 vs. CTRL 143,2 ± 0,7 mEq/L; p<0,05) e, surpreendentemente, encontramos níveis natrêmicos maiores que o controle no grupo DP (DP 148,7 ± 1,8 vs. Ctrl 143,2 ± 0,7 mEq/L; p<0,05). Quanto à avaliação dos parâmetros cardíacos, somente o grupo furosemida apresentou PAM menor que o controle após a administração de fenilefrina nas concentrações de 10 e 50 μg/mL ( Phe10 = Furo 142,6 ± 19,1 vs. Ctrl 222,4 ± 14,2 ; Phe50 = Furo 261,0 ± 74,8 vs. Ctrl 190,9 ± 19,6 mmHg; p<0,05), provavelmente devido à hipovolemia nestes animais. Verificamos ainda que no grupo submetido à sobrecarga salina ocorre aumento da expressão de mRNA para AVP (SS 2,61 ± 0,16 vs. CTRL 1,04 ± 0,04 a.u - unidades arbitrárias; p<0,05) e OT (SS 1,52 ± 0,12 vs. CTRL 1,01 ± 0,05 a.u; p<0,05), enquanto que no grupo dieta pobre estes parâmetros são reduzidos (AVP - DP 0,65 ± 0,07vs. CTRL 1,04 ± 0,04; OT - DP 0,65 ± 0,06vs. CTRL 1,01 ± 0,05 a.u; p<0,05). Por fim, encontramos níveis aumentados de mRNA do receptor AT1 nos grupos sobrecarga salina (SS 2,94 ± 0,26 vs. CTRL 1,14 ± 0,25 a.u; p<0,05) e furosemida (Furo 3,08 ± 0,51 vs. CTRL 1,14 ± 0,25 a.u; p<0,05). Deste modo, estes resultados reforçam o importante papel dos sistemas neuroendócrinos centrais na modulação da homeostase hidroeletrolítica e cardiovascular