Aplicação de modelos ARTMAP na predição de resistência do HIV-1 aos Inibidores de protease

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Calin, Alessandro dos Santos lattes
Orientador(a): Silva, Robson Mariano da
Banca de defesa: Silva, Robson Mariano da, Oliveira, Francisco Bruno Souza, Delgado, Angel Ramon Sanchez
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de Pós-Graduação em Modelagem Matemática e Computacional
Departamento: Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://rima.ufrrj.br/jspui/handle/20.500.14407/14329
Resumo: Durante a última década as Terapias Antirretrovirais (TARV) reduziram a mortalidade em pacientes portadores do HIV-1. No entanto, esta diminuição não conseguiu impedir totalmente o surgimento de novas formas virais resistentes, causadas principalmente pela elevada taxa mutacional do HIV-1. O desenvolvimento de resistência do HIV-1 aos antirretrovirais (ARV) é um fator limitante para o sucesso da TARV. Pacientes com deficiência virológica, normalmente, necessitam de alterações em seus esquemas antirretrovirais, desta forma, técnicas que possam apoiar na previsão de resistência aos ARV possibilitam minimizar as falhas terapêuticas e, em consequência, evitam o aumento da carga viral dos pacientes. Em virtude desses fatos, desenvolvemos o presente estudo com o objetivo de elaborar dois modelos computacionais: um baseado em Redes Neurais ArtMap e outro em Redes Neurais Fuzzy ArtMap. De modo a investigar a resistência na terapia antirretroviral do HIV-1 aos inibidores de protease (IPs) para os subtipos B e C. Para aplicar a metodologia utilizamos os dados obtidos do Laboratório de Virologia Molecular da Universidade Federal do Rio de Janeiro (UFRJ, Brasil) e de uma base pública cedida pela Universidade de Stanford (SU, Estados Unidos). Antes de dividirmos o conjunto de teste (30%) e treino (70%), foi feito um pré-processamento analisando a frequência da ocorrência de mutações em todas as posições da protease e verificou-se que haviam posições com taxas de mutação muito baixas, as quais não teriam relevância para a categorização das amostras presentes na base geral de dados, e assim, foi considerado para o modelo apenas as posições com um total igual ou maior que 7,5% de mutações. Os resultados obtidos foram significativos em ambos os modelos, principalmente nos agrupamentos aos pacientes resistentes ao Lopinavir, ao Nelfinavir e aos pacientes não resistentes aos antirretrovirais. A análise dos resultados foram feitas usando o conceito de especificidade, sensibilidade e acurácia.