Formulações e algoritmos para o problema das p-medianas heterogêneo livre de penalidade

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Santi, Éverton
Orientador(a): Aloise, Daniel
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/19571
Resumo: Apresenta-se neste trabalho um novo modelo para o Problema das p-Medianas Heterogêneo (PPMH), proposto para recuperar a estrutura de categorias não-observadas presente em dados oriundos de uma tarefa de triagem, uma abordagem popular que possibilita entender a percepção heterogênea que um grupo de indivíduos tem em relação a um conjunto de produtos ou marcas. Este novo modelo é chamado Problema das p-Medianas Heterogêneo Livre de Penalidade (PPMHLP), uma versão mono-objetivo do problema original, o PPMH. O parâmetro principal do modelo PPMH é também eliminado, o fator de penalidade. Este parâmetro é responsável pela ponderação dos termos de sua função objetivo. O ajuste do fator de penalidade controla a maneira como o modelo recupera a estrutura de categorias não-observadas presente nos dados e depende de um amplo conhecimento do problema. Adicionalmente, duas formulações complementares para o PPMHLP são apresentadas, ambas problemas de programação linear inteira mista. A partir destas formulações adicionais, limitantes inferiores foram obtidos para o PPMHLP. Estes valores foram utilizados para validar um algoritmo de Busca em Vizinhança Variada (VNS), proposto para resolver o PPMHLP. Este algoritmo obteve soluções de boa qualidade para o PPMHLP, resolvendo instâncias geradas de forma artificial por meio de uma Simulação de Monte Carlo e instâncias reais, mesmo com recursos computacionais limitados. As estatísticas analisadas neste trabalho sugerem que o novo algoritmo e modelo, o PPMHLP, pode recuperar de forma mais precisa que o algoritmo e modelo original, o PPMH, a estrutura de categorias não-observadas presente nos dados, relacionada à percepção heterogênea dos indivíduos. Por fim, uma exemplo de aplicação do PPMHLP é apresentado, bem como são consideradas novas possibilidades para este modelo, estendendo-o a ambientes fuzzy