Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Cavalcante, Mário Sérgio Freitas Ferreira |
Orientador(a): |
Araújo, Fabio Meneghetti Ugulino de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/57837
|
Resumo: |
A identificação de sistemas é uma área de estudo da engenharia que busca encontrar modelos precisos e de baixo custo para descrever o comportamento dos sistemas. Esses modelos podem ser utilizados para prever o comportamento futuro, realizar simulações, ajustar parâmetros e otimizar o desempenho dos sistemas. A dificuldade na identificação de sistemas está na escolha adequada da estrutura do modelo, no número de parâmetros e no método de estimação. Diversas técnicas são uti- lizadas, como redes neurais, inteligência artificial e multimodelos polinomiais, para lidar com a complexidade das não-linearidades e obter modelos precisos. A tese proposta tem como objetivo desenvolver uma técnica de identificação de sis- temas que utilize informações de entrada/saída para obter um modelo válido, preciso, robusto e eficiente. A estratégia proposta combina a lógica fuzzy tipo-2 intervalar com a capacidade de treinamento de redes neurais. A ideia é obter uma estrutura generali- zada que permita a seleção e combinação de modelos locais para aproximar ou prever o comportamento do sistema. Os resultados foram obtidos utilizando três estudos de caso: a equação temporal caó- tica Mackey-Glass, um sistema de fornalhas e um sistema de tanques multisseção. Os resultados da rede proposta para a aproximação e previsão desses sistemas foram com- parados com técnicas da literatura, e a rede neuro-fuzzy intervalar tipo-2 modificada (MIT2FNN) apresentou valores de MSE menores do que as demais técnicas. |