Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Costa, Emanoel Lucas Rodrigues |
Orientador(a): |
Fernandes, Marcelo Augusto Costa |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/49709
|
Resumo: |
A poluição atmosférica é um problema que está cada vez mais presente em nossa sociedade devido ao crescente desenvolvimento dos países. No estudo de poluentes atmosféricos, métodos de estatística multivariada são comumente utilizados, porém a aprendizagem de máquina tem se mostrado uma ótima alternativa, dispondo de técnicas capazes de lidar com problemas de grande complexidade, como é o caso da poluição do ar. Neste trabalho, a técnica de aprendizagem de máquina, Mapas Auto-Organizáveis (SOM), foi utilizada para exploração e análise de dados de poluentes atmosféricos e parâmetros metereológicos de uma rede de monitoramento da qualidade do ar, com estações localizadas na cidade de Salvador - Bahia. O SOM oferece diversos recursos capazes de tornar o estudo de dados mais abragente, os quais foram utilizados tanto para o desenvolvimento de uma análise individual quanto conjunta sobre as estações, que poderam também ser comparados com uma análise de componentes principais. A partir da aplicação do SOM foi possível identificar correlações presentes entre os poluentes das estações estudadas, destacando principalmente a similaridade entre os poluentes NO, NO2 e CO, assim como a similaridade do MP10, SO2 e O3 com os parâmetros meteorológicos presentes em cada estação. Com base na disposição dos neurônios e na formação dos agrupamentos realizados, o SOM permitiu com que características relacionadas ao conjunto de amostras fossem identificadas, possibilitando um estudo sobre a formação de clusters, distribuições, concentrações de poluentes atmosféricos e parâmetros meteorológicos e como cada estação de monitoramento pode está relacionada a sua formação/contribuição, possibilitando uma análise mais abrangente do que a oferecida em métodos tradicionais. Os resultados obtidos mostraram o quão útil e efetivo pode ser o SOM em problemas de poluição do ar, evidenciando diferentes possibilidades na forma de análise de dados que podem ser exploradas para o desenvolvimento de novas pesquisas. |