Modelo para identificação de genes bimodais associados ao prognóstico no câncer

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Justino, Josivan Ribeiro
Orientador(a): Souza, Sandro José de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM BIOINFORMÁTICA
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/44934
Resumo: Nas últimas décadas o interesse biológico em compreender a regulação gênica, tem levado a descobertas de genes tumorais com expressões diferenciadas em subgrupos de pacientes. Estes genes possuem um perfil bimodal de distribuição dos valores de expressão, o que têm despertado a atenção para investigar os padrões de desenvolvimento e de sua funcionalidade. Para melhor compreender o padrão bimodal destes genes, o objetivo principal do trabalho foi identificar grupos distintos de pacientes em determinado tipo de tumor, que apresentassem níveis baixo e alto da expressão para o mesmo gene, associados a um melhor ou pior prognóstico de sobrevida do câncer. Desenvolvemos um método que seleciona genes candidatos ao padrão de bimodalidade a partir da função densidade de probabilidade dos valores de expressão. Analisamos 25 tipos de tumor disponíveis no The Cancer Genome Atlas (TCGA), à realizamos análise de sobrevivência usando informações clínicas extraídas do cBioPortal for Cancer Genomics. Utilizamos os dados de expressão em Fragments by Exon Kilobase per Millions of Mapped Fragments (FPKM) para 24.456 genes, e encontramos nos 25 tipos de tumores 554 genes bimodais únicos, dos quais 46 apresentaram expressão bimodal em mais de um tipo de câncer, com maior prevalência no cromossomo Y. Os tumores KIRC, KIRP, LGG, SKCM, THCA e THYM apresentaram amostras consistentes quanto ao prognóstico de sobrevida com p-valor ≤ 0,01. O método mostrou-se eficiente em reduzir os níveis de variabilidade interna dos grupos, principalmente quando analisamos os dados pelo subtipo de câncer. Como contribuição apresentamos um método com o código livre, que possibilita reduzir os níveis de variabilidade interna dos grupos e que relaciona o padrão de expressão bimodal com o prognóstico de sobrevida. Assim, acreditamos que a utilização do método poderá ser útil na avaliação do padrão bimodal de expressão gênica e na descoberta de novos biomarcadores clínicos para diferentes tipos de câncer.