Ano de defesa: |
2022 |
Autor(a) principal: |
Budke, Jaine Rannow |
Orientador(a): |
Abreu, Marjory Cristiany da Costa |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/49957
|
Resumo: |
O Transtorno do Espectro Autista (TEA) é um transtorno de neurodesenvolvimento marcado por déficits na comunicação e interação social. O protocolo padrão de diagnóstico é baseado no preenchimento de critérios descritivos por um profissional qualificado, o que não estabelece medidas precisas e influencia no diagnóstico tardio. Portanto, novas abordagens diagnósticas precisam ser exploradas para que haja uma melhor padronização das práticas clínicas. O melhor cenário seria a existência de um sistema automatizado e confiável que indicasse o diagnóstico com um nível de garantia satisfatório. Contudo, até o momento, não há bases de dados públicas e representativas com o objetivo de explorar diagnósticos alternativos. Esse trabalho investiga as diferenças nas expressões faciais de pessoas com TEA e Desenvolvimento Típico. Para isso, uma nova base de dados de imagens faciais foi coletada através de vídeos do YouTube e técnicas baseadas em visão computacional foram utilizadas para extrair frames dos vídeos, filtrar a base de dados e extrair características faciais das imagens. Também realizamos experimentos iniciais usando modelos clássicos de aprendizado supervisionado, bem como ensembles, e conseguimos atingir resultados promissores. |
---|