Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Moreira, André Luiz de Lucena |
Orientador(a): |
Costa, César Renno |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOINFORMÁTICA
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/46578
|
Resumo: |
Redes de regulação gênica (GRNs) influenciam a resposta comportamental dos indivíduos quando submetidos a diferentes contextos, além de participarem de processos extremamente importantes para a vida, como diferenciação celular, metabolismo e evolução. Modelos computacionais de redes de regulação gênica, associados à inteligência artificial, possibilitam-nos criar soluções adaptáveis e independentes de contexto. Neste trabalho, simulamos a evolução de GRNs com o objetivo de avaliar como eventos de variação de ambiente e crescimento de rede impactam na capacidade de aprendizado do modelo. Para isso, criamos populações de indivíduos representados por redes de regulação gênicas artificiais (AGRNs), com características físicas e comportamentos baseados em bactérias. Submetemos então essas populações às tarefas: “Orientação a Objetivo”, “Fototaxia” e “Fototaxia com Obstáculos”, avaliando como os eventos de duplicação de gene único, duplicação de genoma completo e mudança de contexto afetam a evolução da população. Os resultados indicaram que um aumento gradual de complexidade das tarefas realizadas é benéfico para a evolução do modelo. Além disso, vimos que redes de regulação gênica maiores são necessárias para tarefas mais complexas, sendo a duplicação de gene único uma boa estratégia evolutiva para o crescimento dessas redes, ao contrário da duplicação de genoma completo. Estudar como GRNs evoluíram em meio biológico nos possibilita não só melhorar os modelos computacionais produzidos, como também prover insights sobre aspectos e eventos que influenciaram o desenvolvimento da vida na terra. |