Controle inteligente de um robô móvel utilizando modos deslizantes, redes neurais artificiais e aprendizagem por reforço

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Baumann, Gabriel de Albuquerque Barbosa
Orientador(a): Bessa, Wallace Moreira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/48351
Resumo: A pesquisa em robôs móveis inteligentes e autônomos tem crescido significativamente devido a suas aplicações militares, civis e industriais, como o monitoramento de plantações agrícolas, o uso em ações de apoio a desastres ambientais, a patrulha de fronteiras, o mapeamento de territórios submarinos ou até mesmo o estudo do comportamento animal. Este trabalho resgata a motivação multi e interdisciplinar da inteligência artificial, partindo de questionamentos filosóficos para chegar à caracterização de sistemas inteligentes e autônomos. Dessa maneira, somente depois de construídas as bases teóricas para a concepção desses agentes, é apresentada uma abordagem bioinspirada para a realização da tarefa de rastreamento de trajetória por um robô móvel omnidirecional, o Robotino® produzido pela Festo® . Com essa finalidade, a estratégia consiste no controle inteligente não linear robusto utilizando Modos Deslizantes, redes neurais artificiais e o algoritmo de aprendizagem por reforço Limite de Confiança Superior. Os fundamentos de cada uma dessas técnicas são apresentados, a fim de justificar, antecipadamente, sua utilização coerente com a proposta teórica, para depois serem incorporadas ao controlador. Assim, apresentam-se Modos Deslizantes e suas limitações acerca de erro residual; as redes neurais artificiais então são aplicadas com o propósito de reduzi-las, porém, também possuem suas restrições; o Limite de Confiança Superior é, portanto, acrescentado com o objetivo de mitigá-las. As características de cada uma das técnicas conferem ao robô robustez na atividade de controle, aprendizagem e autonomia com tomada de decisão, respectivamente, como é explicado a partir dos resultados numéricos e experimentais. O algoritmo elaborado não só alcançou as finalidades propostas, mas também trouxe outros pontos positivos, como evitar a divergência das redes neurais decorrente da atualização contínua de seus pesos. A abordagem desenvolvida com base nos argumentos mais recentes acerca de agentes autônomos obteve ótimos resultados em simulações e em experimentos para o problema de rastreamento de trajetória do Robotino® e representa a tendência crescente de pesquisas na ciência cognitiva corporficada.