Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Cadengue, Lucas Solano |
Orientador(a): |
Bessa, Wallace Moreira |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/47099
|
Resumo: |
Devido à sua grande eficiência, segurança e flexibilidade, os robôs móveis estão sendo cada vez mais utilizados na indústria. Entretanto, o controle de posicionamento dos mesmos se trata de um grande desafio dada a natureza não linear dessa planta e a dificuldade de estimar determinados parâmetros, como os efeitos do atrito. Além disso, um rastreamento de trajetória preciso pode ser essencial para determinadas operações com robôs móveis, como no caso de caminhos estreitos. Neste trabalho, controladores inteligentes são propostos para o rastreamento de trajetória de um robô móvel omnidirecional sujeito a dinâmicas não modeladas. As abordagens de controle utilizadas foram os controladores não lineares Linearização por Realimentação (FBL) e Modos Deslizantes (SMC), ambos acoplados de um compensador inteligente que utiliza Redes Neurais Recorrentes com o objetivo de lidar com as incertezas. A arquitetura da rede neural escolhida se baseou na necessidade de compensação de dinâmicas complexas e ao mesmo tempo restrição de complexidade computacional para que o mesmo pudesse ser embarcado no hardware de um robô móvel. As propriedades de estabilidade dos controladores foram provadas de acordo com o princípio de estabilidade assintótica segundo Lyapunov e o desempenho das estratégias. Foi avaliado tanto em simulações quanto em experimentos com o Robotino®, um robô móvel omnidirecional produzido pela Festo Didatics. Foi observado um ganho de desempenho no controlador quando comparado com redes neurais sem a recorrência. |