Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Silva Júnior, Andouglas Gonçalves da |
Orientador(a): |
Gonçalves, Luiz Marcos Garcia |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/32229
|
Resumo: |
Esta tese propõe um sistema holográfico completo para ser aplicado em pesquisa científica e em monitoramento, que é capaz de detectar micropartículas a partir da projeção holográfica de amostras de água, utilizando uma abordagem de deep learning. O sistema proposto nesta tese utiliza técnicas de holografia digital para adquirir hologramas dessas partículas (um dispositivo foi construído para isso), reconstruí-las numericamente obtendo informações de fase e intensidade, e classificá-las usando modelos de aprendizado de máquina. Além disso, desenvolvemos um aplicativo na web capaz de realizar todas as etapas da reconstrução do holograma e do processo de classificação uitlizando-se dos modelos treinados, que também está disponível. A necessidade de estudos sobre partículas que são invisíveis a olho nu e que podem ser perigosas para a saúde dos seres vivos é um tema cada vez mais importante de pesquisa e há muitas preocupações a respeito. Um exemplo são os diversos tipos de microplásticos encontrados em grande escala em diferentes partes do planeta, até mesmo dentro do corpo humano. Outra partícula que pode ajudar a identificar microplásticos e que pode ser usada para calcular bioindicadores de qualidade da água são as diatomáceas. A detecção de microplásticos e diatomáceas está sujeita a estudos difíceis devido ao seu tamanho, na ordem do micrômetro. |