Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Medeiros, Philippe Eduardo de |
Orientador(a): |
Bessa, Wallace Moreira |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/31936
|
Resumo: |
As oscilações stick-slip representam uma das principais causas de problemas e da queda de desempenho do processo de perfuração de um poço de petróleo, além de limitar a vida útil e a produtividade da broca. Embora grandes melhorias tenham sido feitas para superar essa disfunção, o projeto de controladores para esse tipo de sistema é muito desafiador, principalmente em consequência da grande quantidade de incertezas envolvidas. Neste trabalho, um controlador inteligente inspirado numa estrutura biológica é proposto para atenuar as auto-oscilações torcionais em colunas de perfuração de poços de petróleo devido ao fenômeno stick-slip. A estrutura do controlador inteligente é baseada na combinação de uma técnica de controle não linear com inteligência computacional, o que permite ao sistema fazer previsões razoáveis sobre o comportamento dinâmico da planta, adaptar-se às mudanças que acontecem durante o seu funcionamento, aprender interagindo com o ambiente e ser robusto a incertezas estruturadas e não estruturadas. Essas características, que estão associadas com os atributos mais fundamentais da inteligência biológica, são levadas em consideração no projeto do controlador, o qual é baseado na técnica de controle por modos deslizantes juntamente com uma rede neural adaptativa. Um algoritmo de aprendizagem por reforço, baseado no limite de confiança superior (Upper Confidence Bound - UCB), é utilizado para fazer parte do treinamento da rede neural, que é concluído através da atualização online do seu vetor de pesos pela minimização de um sinal de erro composto. As propriedades de limite e convergência de todos os sinais de malha fechada são provadas por meio de uma análise de estabilidade de Lyapunov. Por último, simulações numéricas são apresentadas para validar a eficácia da abordagem proposta na estabilização de velocidade em colunas de perfuração e, consequentemente, na atenuação das oscilações torcionais provocadas pelo fenômeno stick-slip. |