Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Barros, Thiago Medeiros |
Orientador(a): |
Oliveira, Luiz Affonso Henderson Guedes de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/31933
|
Resumo: |
A evasão escolar, também conhecida como abandono escolar, é um problema extremamente complexo, pois envolve não apenas uma variedade de perspectivas, mas também uma variedade de diferentes tipos de comportamento de abandono. Historicamente, os modelos de evasão escolar mais citados tiveram sua origem na educação, entretanto a emergente área de Ciência de Dados aplicada na Educação é capaz de desenvolver novos modelos preditivos, com resultados geralmente melhores quando comparados com os métodos estatísticos tradicionais. O principal objetivo dessa tese é a proposição de um processo para geração de um modelo preditivo de evasão escolar baseada em Ciências de Dados. Para tal, uma sequência de etapas é definida, a fim de modelar um fluxo de informação, desde a definição do problema até a geração de informação útil a gestores e professores. As etapas são compostas por: "Entender o Problema", "Entender os Dados", "Engenharia de Atributos", "Seleção de Atributos", "Balanceamento de Dados", "Modelos", "Avaliação"e "Interpretação". A contribuição da proposta se encontra na indicação de quais técnicas e algoritmos devem ser empregados em cada etapa do processo apresentado, e na exposição de que o fenômeno de evasão escolar deve ser abordado como um problema de classes desbalanceadas, a qual deve utilizar-se de ferramentas e métricas apropriadas, a fim de gerar um modelo de predição robusto e de fácil interpretação. O processo proposto foi validado sobre dados educacionais, socioeconômicos e demográficos de alunos de cursos integrados do Instituto Federal do Rio Grande do Norte (IFRN). |