Aninhamento em redes bipartidas

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Araújo, Aderaldo Irineu Levartoski
Orientador(a): Corso, Gilberto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: Programa de Pós-Graduação em Física
Departamento: Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/16563
Resumo: We present a nestedness index that measures the nestedness pattern of bipartite networks, a problem that arises in theoretical ecology. Our measure is derived using the sum of distances of the occupied elements in the adjacency matrix of the network. This index quantifies directly the deviation of a given matrix from the nested pattern. In the most simple case the distance of the matrix element ai,j is di,j = i+j, the Manhattan distance. A generic distance is obtained as di,j = (i¬ + j¬)1/¬. The nestedness índex is defined by = 1 − where is the temperature of the matrix. We construct the temperature index using two benchmarks: the distance of the complete nested matrix that corresponds to zero temperature and the distance of the average random matrix that is defined as temperature one. We discuss an important feature of the problem: matrix occupancy. We address this question using a metric index ¬ that adjusts for matrix occupancy