Uma abordagem por nuvem de partículas para problemas de otimização combinatória

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Souza, Givanaldo Rocha de
Orientador(a): Gouvêa, Elizabeth Ferreira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: Programa de Pós-Graduação em Sistemas e Computação
Departamento: Ciência da Computação
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/17970
Resumo: Combinatorial optimization problems have the goal of maximize or minimize functions defined over a finite domain. Metaheuristics are methods designed to find good solutions in this finite domain, sometimes the optimum solution, using a subordinated heuristic, which is modeled for each particular problem. This work presents algorithms based on particle swarm optimization (metaheuristic) applied to combinatorial optimization problems: the Traveling Salesman Problem and the Multicriteria Degree Constrained Minimum Spanning Tree Problem. The first problem optimizes only one objective, while the other problem deals with many objectives. In order to evaluate the performance of the algorithms proposed, they are compared, in terms of the quality of the solutions found, to other approaches