Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Oshiro, Marcio Takashi Iura |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-28052012-091652/
|
Resumo: |
Esta dissertação trata do problema da k-árvore de custo mínimo (kMST): dados um grafo conexo G, um custo não-negativo c_e para cada aresta e e um número inteiro positivo k, encontrar uma árvore com k vértices que tenha custo mínimo. O kMST é um problema NP-difícil e portanto não se conhece um algoritmo polinomial para resolvê-lo. Nesta dissertação discutimos alguns casos em que é possível resolver o problema em tempo polinomial. Também são estudados algoritmos de aproximação para o kMST. Entre os algoritmos de aproximação estudados, apresentamos a 2-aproximação desenvolvida por Naveen Garg, que atualmente é o algoritmo com melhor fator de aproximação. |