Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Medeiros, Rodrigo Matheus Rocha de |
Orientador(a): |
Pereira, Marcelo Bourguignon |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/28020
|
Resumo: |
Existem várias situações práticas nas quais é de interesse modelar eventos associados com variáveis que assumem valores discretos. Até o momento, as teorias que foram construídas e aperfeiçoadas para a análise de observações com esta natureza possuem ênfase na modelagem de dados discretos não-negativos. Entretanto, observações discretas que possam assumir qualquer valor no conjunto dos números inteiros Z = {. . . , −2, −1, 0, 1, 2, . . .} também podem ser encontradas em diferentes contextos. O objetivo principal desta dissertação consiste em propor uma nova parametrização para distribuição Laplace discreta assimétrica (KOZUBOWSKI; INUSAH, 2006), em termos da média e de um parâmetro de dispersão, e então de nir um novo modelo de regressão capaz de modelar observações que assumem valores em Z com base nesta distribuição. Consideramos o estimador de máxima verossimilhança para a etapa de estimação dos parâmetros desconhecidos do modelo. Propomos métodos de diagnósticos para avaliar a qualidade do ajuste. Realizamos alguns estudos de simulação para veri car o desempenho dos estimadores, das estatísticas do teste e dos resíduos propostos. Por m, aplicamos o modelo em dois conjuntos de dados reais. |