Diagnóstico de acidentes da usina nuclear de Angra 2 baseado em agentes inteligentes de aquisição em tempo real, e em um modelo de árvore lógica

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Paiva, Gustavo Varanda
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Nuclear
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/10384
Resumo: This work aims to create a model, using the Python language, which with the application of an Expert System uses production rules to analyze the data obtained in real time from the plant and help the operator to identify the occurrence of transients / accidents. In the event of a transient the program alerts the operator and indicates which section of the Operator's Manual should be consulted to bring the plant back to its normal state. The generic structure used to represent the knowledge of the Expert System was a Fault Tree and the data obtained from the plant was done through intelligent agents that transform the data obtained from the plant into Boolean values used in the Fault Tree, including using Fuzzy Logic. In order to test validate the program, a simplified model of the Almirante Alvaro Alberto 2 Nuclear Power Plant (Angra 2) manuals was used and with this model, simulations were performed to analyze the program's operation and the reduction in the transient identification time when compared with manual methods. The results of the tests presented significant reduction in the time and great accuracy, demonstrating the applicability of the model to the problem.