Time-delayed bilateral teleoperation of an aerial manipulator

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Coelho, André Fialho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Elétrica
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/14075
Resumo: This thesis presents a framework to allow stable and performant aerial telemanipulation with fully-actuated aerial manipulators. In order to fulfill this objective a time-domain passivity-based controller was applied to cope with the sources of instability introduced by the communication channel, namely time delay, package loss, and jitter. Additionally, in order to improve the position synchronization characteristics of the teleoperation system, a Time Domain Passivity Approach (TDPA) based drift compensator was developed, which, in addition to compensating the drift caused by the passivity controller, ensures that the teleoperation forces remain within a safe range. The drift-compensation approach was also extended to allow its application to multi-DoF robots, including the DLR Suspended Aerial Manipulator (SAM). The efficacy of the proposed drift compensator was demonstrated through simulations and hardware experiments. Adding to that, due to the redundancy of such systems, a whole-body control framework was applied in order to allow the human operator to command Cartesian end-effector poses while a secondary task is autonomously fulfilled in the null space without disturbing the teleoperation system. Numerical validation was performed in order to demonstrate the applicability of the proposed framework to time-delayed aerial telemanipulation scenarios.