Controle de um sistema assistivo para membro superior ativado com movimento decodificado através de sinais EEG

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Veslin Díaz, Elkin Yesid
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Mecânica
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/12153
Resumo: In this research project a BCI (Brain Computer Interface) system to serve as control platform for human elbow flexion/extension movement was studied and developed. EEG signals related with real and imaginary actions of arm flexion/extension movements were used. A comprehensive bibliographic revision in EEG signal processing and associated techniques for decoding, classification and control has been developed. In order to decode from EEG signals elbow related kinematics: position, velocity and acceleration; a Kalman Filter was used. While for signal classification was implemented an integration of SVM (Support Vector Machine) and LDA (Linear Discriminant Analysis). A dynamic model of the human arm was integrated with the Kalman Filter through Differential Flatness in order to determine the necessary amount of energy to produce the desired movement. Both systems was embedded into a close loop BCI through a PID controller, a reference loop that allows to the proposed assistive system to drive the arm movement was added. The results obtained confirms that it is feasible to control the elbow movement using EEG signals related with real and imaginary actions with a higher precision.