Planejamento de sinais para identificação de modelos multivariáveis com restrição

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Mussoi, Cristiano Salah
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Química
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/13595
Resumo: A new methodology for the identification of empirical models for Model Predictive Control (MPC), which considers both operational and phenomenological constraints, is proposed in this dissertation. From the work of ORENSTEIN (2013), a "gray box" method of identification type was developed capable to generate only physically consistent models, i.e., models in which the value and the signal of the static gains have physical sense. The developed methodology, which makes use of step-type as well as GBN-type (Generalized Binary Noise) input disturbances, involves both online and offline steps, and the offline steps are performed by a computational package composed of four algorithms: the first two ones perform the data analysis of the process and the last two ones solve optimization problems with restriction. The methodology was applied in the identification of linear dynamic systems and of a classic problem in this field, namely, a Shell distillation column, showing to be fast and robust in the simulations presented. The simulation times were used as indicators of speed and the statistical parameters MRSE (Mean Relative Squared Error) and MVAF (Mean Variance-Accounted-For) as indicators of robustness of the proposed methodology.