Extensão do método das perturbações para escoamentos liminares sobre perfis não retilíneos
Ano de defesa: | 1968 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Rio de Janeiro
Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Mecânica UFRJ |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11422/3270 |
Resumo: | Apresenta uma sistematização e uma aplicação do método de Poincaré-Lighthill-Kuo (PLK) para a solução de equações a derivadas parciais pelo desenvolvimento em série de funções. Pelo exposto fica evidente que o método das perturbações pode ser aplicado a um perfil “suave” qualquer. Como orientação para a leitura dividimos o trabalho em duas partes. Na primeira fizemos um estudo generalizado e na segunda temos uma aplicação a um perfil cossenoidal. Há ainda uma terceira parte destinada a comentários e dois anexos contendo os programas e curvas determinadas por estes. A principal utilidade de nossas conclusões será na Aerodinâmica de vez que faz parte de nossas hipóteses simplificadoras a suposição de um elevado número de Reynolds. A solução fica também restrita à primeira parcela perturbada que, em casos especiais (como ocorre na placa cossenoidal),pode ser na realidade a segunda parcela e assim por diante. Para ordens superiores torna-se necessário a introdução de uma distorção do sistema de coordenadas em função do parâmetro-perturbação o que não foi realizado por carência absoluta de tempo. De uma forma geral, para fácil assimilação, as conclusões encontradas podem ser encaradas como uma correção da solução de Blasius para a placa plana em função da ordem de grandeza da perturbação. Mais uma vez chamamos à atenção que, como é da própria essência do método, o perfil em estudo tem de ser “suave” (ou seja, suas derivadas têm que ser de pequeno valor ao longo de todo o perfil) caso contrário o que está exposto não se aplica. Sob o ponto de vista matemático o problema consiste em uma linearização de um sistema de equações diferenciais (não linear) a derivadas parciais, pelo desenvolvimento em série de funções. |