Application of the modal expansion method in the prediction of dynamic responses in a reciprocating compressor interstage piping system

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Mendonça, Claudio de Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Oceânica
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/23486
Resumo: Structures and equipment subject to dynamic loading are prone to a shortened life span due to excessive vibration levels, which can lead to fatigue failure of its components. Continuous monitoring of those systems can be a complicated and expensive task, due to the complexity and little or no accessibility to some locations, which makes it difficult to assess the structural integrity. One way to deal with this issue is to use finite element model, output-only modal analysis and the modal expansion method to predict dynamic responses in locations that have not been measured. In this work, three case studies are analyzed. The first two case studies are developed using an aluminum rectangular beam, each one with its respective boundary condition and the third case study was of a real industry system. The experimental modal matrix was obtained through output-only modal analysis and a mixed reduction process using Guyan and the System Equivalent Reduction Expansion Method (SEREP) technique was used to reduce the Finite Element model for each case studied, thus ensuring the compatibility between numerical and experimental degrees of freedom. Model smoothing was carried out using the local correspondence for modes and coordinates, an extension of the LC method. Finally, by using the modal expansion method, the smoothed modal model was used to predict dynamic responses. Results showed high accuracy between the measured and the predicted acceleration signals for all three cases presented.