Monitoramento de defeitos em dutos rígidos longos por parâmetros de emissão acústica e redes neurais

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Marnet, Luiza Ribeiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Elétrica
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/11611
Resumo: Monitoring equipments in real time is of fundamental importance in production systems that pose risks to safety and the environment. The Acoustic Emission method stands out among nondestructive tests for the possibility of analyzing the integrity of equipments during its use. Using neural networks to analyze acoustic emission signals from cracks can be a way to monitor equipment failures in real time and without the need for expert analysis. Crack propagation can be classified into several phases, and it is important to stop production for repair before a failure of the equipment enters in the unstable propagation phase. The objective of this work is the use of supervised and unsupervised neural networks to perform an automatic division of the crack propagation phase into 40 meter pipelines and then train supervised neural networks to classify the data previously categorized by the developed automatic methodology . Two sets of data from different hydrostatic tests were used in this research. For one of them, the supervised neural networks achieved, on average, approximately 82% accuracy in the classification of the crack propagation phases for the test data set and, for the other, around 90%.