Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Ferreira, Fabio Isaac [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/144381
|
Resumo: |
A dressagem é um processo essencial para a usinagem, pois impacta diretamente na qualidade superficial de peças retificadas. A dressagem consiste em recompor a característica cortante dos grãos abrasivos da superfície do rebolo após sucessivas retificações, a partir da remoção de material pela ponta do dressador de diamante. O dressador pode ser monitorado em tempo real utilizando sensores, a fim de garantir a qualidade no processo da dressagem e fornecer informações da condição da ferramenta, sem precisar interromper o processo de usinagem. Assim, este trabalho propõe um método para predição da largura de atuação do dressador de diamante, utilizando sinais de emissão acústica e redes neurais artificiais. Sabe-se que a largura de atuação do dressador impacta diretamente na dressagem, pois determina a agressividade que é gerada no rebolo. Por isso, um sistema de monitoramento online que seja capaz de predizer um passo à frente a condição do dressador seria de grande valia para o processo, pois extinguiria a necessidade de paradas para monitoramento direto, reduziria a atuação dos operadores e evitaria a subutilização ou sobreutilização da ferramenta. Para este fim, os experimentos foram realizados em uma retificadora plana equipada com rebolos abrasivos de óxido de alumínio e dressadores piramidais de ponta única, do tipo natural. Os sinais de emissão acústica foram aquisitados a uma frequência de 2 MHz e processados utilizando filtros digitais e diferentes estatísticas, como RMS, ROP, power law, CFAR e MVD. Dois tipos de redes neurais foram desenvolvidos, um para estimação e outro para predição, sendo que a saída da primeira rede é utilizada como entrada para a segunda. Para a estimação, foram desenvolvidos modelos neurais do tipo MLP, que utilizam as estatísticas dos sinais do sensor como suas entradas. Para a predição, foram desenvolvidos modelos do tipo TDNN, que inserem o atraso no tempo. Os resultados obtidos indicam que a emissão acústica é eficiente para a predição da largura útil do dressador com a utilização das melhores estatísticas e faixa de bandas selecionadas. A utilização de redes neurais se apresentou eficiente para este tipo de aplicação e a metodologia proposta pode ser implementada para a predição do parâmetro, fornecendo informações indispensáveis ao processo, um passo à frente. |