Comparação de desempenho entre os modelos neurais ágeis ELM e WiSARD

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Oliveira, Luiz Fernando dos Reis de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia de Sistemas e Computação
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/8707
Resumo: Neural models are popular in machine learning. Agile neural models are a subset of this kind of models and are characterized by presenting a significantly faster training time, being applied mainly in online learning domains. Two examples of agile neural models are the Extreme Learning Machine (ELM), a single hidden layer feedforward neural network which synaptic weights do not need to be iteractively adjusted, and the Wilkes, Stonham and Aleksander Recognition Device (WiSARD), a weightless neural network model with multiple discriminators that use neurons based on RAM memory structures. In this work, a comparative study between ELM and WiSARD models is made, aiming to evaluate both models performance when applied to different datasets having different characteristics. The evaluation is made by comparing test accuracy, training and testing times metrics, as well as the amount of RAM memory consumed by the models.