Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Santos, Glauco Roberto Munsberg dos |
Orientador(a): |
Araújo, Ricardo Matsumura de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pelotas
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Computação
|
Departamento: |
Centro de Desenvolvimento Tecnológico
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://guaiaca.ufpel.edu.br/handle/prefix/4816
|
Resumo: |
O grafite é um intervenção urbana que utiliza muros, paredes e postes como suporte e geralmente está ligado a uma mensagem social ou política, estas representações urbanas são, muitas vezes, um importante indicador social. Mapeá-los e rastreá-los permite compreender como essas intervenções interagem com os demais elementos do meio urbano. Este trabalho tem por objetivo avaliar o uso de Redes Neurais Convolucionais e Sistemas Multiagente para localizar e mapear grafites em cidades, a partir de imagens em nível de rua provenientes do Google Street View. O método utilizado foi a elaboração de quatro experimentos com as redes neurais pré-treinadas e reuso dos seus classificadores para o novo contexto de identificação de grafite. Utilizamos para isso a técnica de fine-tuning com imagens extraídas do Flickr e do Google Street View. Através da análise dos modelos será mostrado que o reuso dos classificadores é promissor, diminuindo o tempo de treinamento das redes e obtendo modelos com resultados de 76,9% para a taxa de verdadeiros positivos quando testado o dataset do Flickr e sensibilidade de 71,43% em imagens do ambiente urbano. Destaca-se ainda neste trabalho o sistema multiagente capaz de percorrer o ambiente urbano do Google Street View e analisar em média 61 imagens por minuto para cada agente. |