Perfil Proteico Global de Células Planctônicas e de Células Aderidas de L. monocytogenes por 1D-LC/tandem MS

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Mata, Marcia Magalhães
Orientador(a): Silva, Wladimir Padilha da
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Biotecnologia
Departamento: Biotecnologia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://guaiaca.ufpel.edu.br/handle/123456789/1213
Resumo: L. monocytogenes is the etiologic agent of listeriosis, a severe food-borne disease. This pathogen has also variable ability to adhere to food-processing surfaces. Thus, the aims of this study was at first to evaluate the influence of the temperature (04-10-25-37°C) and time of incubation (24-48-168h) on the formation of attached cells by L. monocytogenes strains of diverse origins, serotypes and lineages using a colorimetric microtitre plate method. After this, comprehensive proteomics experiments using label-free 1D- liquid chromatography/tandem mass spectrometry (1D-LC/tandem MS) were performed to determine if the global proteomic responses of L. monocytogenes strains (Siliken and F2365) is altered markedly as attached cells compared to its planktonic state when growth media and temperature are the same. Our results showed that attached cells produced by different origins of L. monocytogenes did not change significantly when subjected to experimental conditions, unlike what was observed with attached cells produced by different serotypes and lineages of L. monocytogenes, which were clearly affected by environmental conditions.such as temperature and time of incubation. The ability of lineage II and serotype 1/2a and 1/2b to form large amount of attached cells when compared with the others in specific conditions indicates that risks from Listeria adherence must be taken seriously in sensitive food environments in order to find safer alternatives to prevent contamination and further dissemination of listeriosis. Only 8 proteins demonstrated substantial changes in common between both strains and temperatures in attached cells compared to their planktonic counterparts. They are: GroEL, DnaK, PtsH, PdxS, Pgi, RpsB, RpsD, and RpsP. Moreover, it was observed that the cell surface protein BapL abundance, though low, was not enhanced in attached cells suggesting its role in adherence could be a generalized contribution to the cell wall hydrophobicity. Interestingly, our experiment suggest that at 25°C the attached cells in both strains undergo flagella synthesis repression. Also, Sig B Regulon can be associate with an enhanced general stress response occurs in lineage II Strain (Siliken) but not in lineage I Strain (F2365) and could relate to the consequences of attachment. The temporal survey-based approach demonstrates clearly that high coverage represents a powerful means to investigate dynamic responses in L. monocytogenes from a functional genomics perspective