Consolidação do estudo e análise da robustez de operadores fuzzy considerando a abordagem intuicionista

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Zanotelli, Rosana Medina
Orientador(a): Reiser, Renata Hax Sander
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação
Departamento: Centro de Desenvolvimento Tecnológico
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpel.edu.br/handle/prefix/3837
Resumo: Esta dissertação contribui com a análise da robustez na Lógica Fuzzy, como uma importante fundamentação para modelagem e desenvolvimento de sistemas robustos, estendendo esta abordagem para a lógica intuicionista de Atanassov. Primeiramente, apresenta-se uma introdução à lógica fuzzy, discutindo as negações, funções de agregações, implicações e coimplicações fuzzy, incluindo também os conectivos Xor e derivações. O trabalho também considera a análise da -sensibilidade destes conectivos fuzzy e suas construções duais, essencialmente focados em propriedades algébricas e projeções. Começando com a avaliação da sensibilidade de conectivos fuzzy, a proposta estende os resultados para classes de conectivos fuzzy intuicionistas. Como principal contribuição, formalmente estabelece-se que a robustez preserva as construções duais e as funções de projeção relacionadas a conectivos fuzzy intuicionistas representáveis. Mostra-se que a extensão, do trabalho científico proposto por Y. Li e colaboradores, 2005 em "An Approach to Measure the Robustness of Fuzzy Reasoning", para a classe de conectivos fuzzy intuicionistas é preservada pelas construções duais. A presente pesquisa mostra que a análise de robustez pode ser diretamente verificada a partir de operadores fuzzy usando duas estratégias: (i) a -sensibilidade de operadores fuzzy baseada na análise da monotonicidade de seus argumentos (negações, agregações, implicações e coimplicações); e ainda (ii) a avaliação do comportamento dos operadores fuzzy nos pontos terminais do intervalo unitário, onde a monotonicidade não pode ser aplicada (conectivos Xor, XNor, bi-implicações e bi-coimplicações).