Sistema de Recomendação de Matrículas a partir do Perfil e do Progresso dos Estudantes no Contexto de Campus Inteligente

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Scaglioni, Fabricio Gonzales
Orientador(a): Mattos, Júlio Carlos Balzano de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/12891
Resumo: Nas últimas décadas muitos avanços tecnológicos foram atingidos e, com eles, surgiram conceitos de prédios e cidades inteligentes. Concomitantemente surge o conceito de campus inteligente, entendido como a utilização dos conceitos de prédios e cidades inteligentes em um campus universitário. Contudo, não se pode esque cer que o mais importante em um campus universitário é sua comunidade. Sistemas de recomendação têm sido utilizados em um amplo espectro de aplicações. Não é difícil encontrar recomendadores para livros, filmes, músicas e campanhas publicitá rias. Focado na comunidade e nos processos acadêmicos executados diariamente, este trabalho visa auxiliar os alunos de graduação no momento da rematrícula atra vés de sistemas de recomendação, os quais direcionam a escolha das disciplinas para aquelas que melhor se adéquam ao momento acadêmico do aluno. Para o desenvolvi mento do recomendador foram utilizados algoritmos de recomendação que executam as tarefas de analisar o histórico do aluno, avaliar os pré-requisitos e as equivalências cursadas e recomendar as disciplinas, sendo posteriormente classificadas e seleci onadas para então gerar a lista final de recomendações. Como estudo de caso foi utilizado o Curso de Ciência da Computação da UFPel. As recomendações foram geradas para o primeiro semestre do ano de 2019 e comparadas com as disciplinas solicitadas, matriculadas e aprovadas. Foi desenvolvido ainda uma funcionalidade de booster para impulsionar as recomendações de um período especifico do currículo do curso. Após a realização dos testes e comparação com o que foi solicitado e cursado pelo aluno chegou-se a acertos de mais de 60%.