Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Rossatto, Felipe Copceski
Orientador(a): Härter, Fabrício Pereira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Modelagem Matemática
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/14182
Resumo: Neste trabalho, propõe-se um modelo baseado em Redes Neurais Convolucionais Recorrentes (RNCR), para previsão meteorológica de curto prazo nowcasting. Esta abordagem é uma alternativa a técnicas tradicionais de extrapolação estatística. Para isso, foi utilizada uma RNCR supervisionada de aprendizagem preditiva conhecida como PredRNN++. Foram utilizados dados (imagens) de quatro radares localizados no sul do Brasil, disponíveis para acesso gratuito no site do INPE (Instituto Nacional de Pesquisas Espaciais), como entrada e saída da rede. Na saída, o alvo ou professor, são imagens de 6 a 120 minutos à frente no tempo, em relação a entrada, ou seja, o que se deseja prever. Para se verificar a qualidade da previsão gerada pela PredRNN++, além de uma análise empírica das imagens previstas, utilizam-se as métricas estatísticas RMSE, SSIM e MAE explorando um evento extremo, ocorrido no sul do Brasil, em 12 de junho de 2018. A rede mostrou-se uma alternativa viável para previsão de nowcasting, uma vez que reproduz a intensidade e a localização dos sistemas emulados.