Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Labonde, Julia |
Orientador(a): |
Dellagostin, Odir Antônio |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pelotas
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Biotecnologia
|
Departamento: |
Centro de Desenvolvimento Tecnológico
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufpel.edu.br/handle/prefix/3710
|
Resumo: |
A leptospirose é uma doença infecciosa de importância mundial, que afeta humanos e animais, causada por espiroquetas patogênicas pertencentes ao gênero Leptospira. Para a área epidemiológica e clínica é fundamental que os laboratórios tenham a capacidade de identificar e classificar com precisão as espécies de Leptospira que causam doença, para que sejam tomadas decisões coerentes com relação à saúde pública. Neste estudo, nós relatamos pela primeira vez a utilização de ferramentas de mineração de dados para fins de classificação de cepas do gênero Leptospira. Vinte e cinco loci referentes a 15 genes foram selecionadas e analisados em 600 genomas rascunho de Leptospira, com o propósito de buscar polimorfismos que pudessem ser utilizados na classificação de cada espécie. Para isso, foram utilizados os algoritmos baseados em mineração de dados C4.5, Naive Bayes e Support Vector Machine. Todos os algoritmos computacionais de mineração de dados utilizados neste trabalho apresentaram valores de acurácia acima de 93% para classificação de Leptospira a nível de espécie, no entanto, o algoritmo C4.5, além de atingir a melhor acurácia de classificação (95.6%), também apresentou os genes que contribuíram para o resultado final da análise. O mesmo banco de dados genômicos utilizado pelos algoritmos computacionais foi submetido a testes com a metodologia MLST – técnica mais utilizada para classificação molecular de espécies deste gênero – no entanto, nenhum dos testes apresentou acurácia superior a 80%. Visto o algoritmo de mineração de dados C4.5 atingir uma acurácia superior aos outros algoritmos, pode-se concluir que C4.5 é uma ferramenta de mineração de dados bastante promissora para classificar espécies de Leptospira. |