Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Marques, Bianca Parulla |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://repositorio.furg.br/handle/1/9094
|
Resumo: |
A neurociência é o estudo do sistema nervoso, sendo o encéfalo seu principal componente. Associado aos Sistemas BCI (Brain Computer Interface), é possível a comunicação do encéfalo com o computador. Umas das formas de coleta dos sinais cerebrais é a partir da eletroencefalografia (EEG). As ondas cerebrais podem ser classificadas usando sua frequência, amplitude, forma e posição no couro cabeludo. As aplicações EEG se concentram em uma faixa de 0,1 Hz a 100 Hz, onde os sinais de EEG são classificados com base em sua faixa de frequência e estão relacionados entre as ondas: Alfa, Beta, Teta, Gama e Delta. Este trabalho foca na modulação da amplitude da faixa de frequência da Banda Beta, que é a faixa de ondas cerebrais que situa-se entre 13 Hz e 30 Hz, associada ao estado de atenção. Os dados estudados referem-se ao reconhecimento de objetos espaciais por pessoas videntes e cegas, de forma a entender quais áreas são ativadas durante o reconhecimento. Para análise dos dados, são utilizadas técnicas de classificação, dando destaque aos algoritmos de Árvores de Decisão J48 e Random Tree, para a extração de outros tipos de padrões e informações. Os resultados obtidos sugerem que a modulação da amplitude para a Banda Beta não apresentam resultados melhores do que a banda completa, nem relacionado a confirmar ou a negar as hipóteses, nem relacionado a ter um percentual de acerto maior dos algoritmos de classificação. |