Estabilização para um sistema acoplado tipo KdV-KdV
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Matematica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/33075 |
Resumo: | O propósito deste trabalho é estudar a estabilização interna de um sistema de duas equações de Korteweg-de Vries (KdV) generalizada sobre o efeito de um termo de amor-tecimento localizado. Para isso, um breve histórico do surgimento e dedução da equação KdV é apresentada na introdução. A boa colocação para soluções do sistema são investigadas em três situações, no caso linear usamos a teoria de semi-grupo, no caso não-linear quando o expoente do termo não linear varia no intervalo [1; 2), localmente é utilizado argumentos de ponto fixo, e globalmente por meio de estimativas a priori, por último o caso não-linear quando o expoente do termo não linear varia no intervalo [2; 4), obtemos apenas a existência global para as soluções fracas utilizando argumentos de densidade. No que diz respeito a obtenção do decaimento exponencial, usamos técnicas multiplicativas combinadas com argumento de compacidade-unicidade e reduzimos o problema a provar uma propriedade de continuação única para as soluções fracas. Tal propriedade é obtida via estimativas de Carleman para o operador da KdV. |