Sistema automático para negociação de ações usando técnica de mineração de dados com detecção de mudança de conceito

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: SOUZA, Victor Lorena de Farias
Orientador(a): OLIVEIRA, Adriano Lorena Inácio de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/14961
Resumo: Uma série temporal financeira representa as cotações dos preços das ações e apresenta comportamento similar a um fluxo de dados. Para a descoberta de padrões presentes em seus dados alguns trabalhos utilizam técnicas de mineração de dados que são fundamentadas na ideia de que os dados históricos guardam a memória essencial para prever a direção futura dos preços. Métodos tradicionais propostos na literatura consideram que o ambiente é estático, ou seja, que o mecanismo gerador da série financeira é o mesmo durante todo o intervalo de tempo de interesse. Porém, no caso de séries temporais financeiras, isso pode não ocorrer. Para resolver este problema, esta dissertação propõe a abordagem PAA-IDPSO-CD (Aproximação por Valor Agregado de Segmento - Otimização por Enxame de Partículas Auto Adaptativa com detecção de mudança de conceito) para descoberta de padrões em séries temporais financeiras. A abordagem proposta objetiva lidar explicitamente com mudanças de conceito na série e descobrir os melhores padrões representativos dos dados das séries temporais que serão utilizados junto a uma estratégia de investimento formulada para automatizar as operações a serem feitas no mercado de ações. Isso possibilitará a redução das incertezas e dos riscos envolvidos nas compras e vendas de ações e auxiliará os investidores a maximizar o lucro nas suas operações feitas no mercado de ações. A fim de alcançar melhores resultados são propostas diferentes estruturas de partículas, utilizadas pelo IDPSO, junto a diferentes regras de decisão. Primeiramente, é utilizada uma estrutura básica para a partícula, em que se opera apenas na posição comprado no mercado financeiro. É proposto também uma segunda estrutura que é capaz de operar tanto na posição comprado quanto na posição vendido. Os experimentos do presente estudo comparam os resultados das versões do método proposto entre si e com os resultados obtidos pelas abordagens Buy and Hold (B&H) e SAX-GA (Aproximação por Valor Agregado Simbólico - Algoritmos Genéticos). Para isso, foram realizados Teste t Pareado com nível de confiança de 95% em vinte ações. O presente estudo conclui que o PAA-IDPSO-CD apresentou resultados estatisticamente melhores que o B&H e o SAX-GA para todas as vinte ações em que os testes foram executados (pvalor <0;05). Além disso, a estratégia que opera nas posições comprado e vendido é melhor quando comparada àquela que opera apenas na posição comprado. No estudo comparativo em onze ações não houve diferença estatística e em outras sete a estratégia comprado e vendido obteve melhores resultados (pvalor < 0; 05).