Análise de discriminantes lineares para modelagem e reconstrução de imagens de faces

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Kitani, Edson Caoru
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Centro Universitário da FEI, São Bernardo do Campo
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.fei.edu.br/handle/FEI/482
Resumo: O reconhecimento de faces é uma nova área de pesquisa que tem recebido grande atenção nos últimos anos, dada a sua abrangência e multiplicinaridade. Entretanto, apesar dos avanços muitos problemas ainda não foram solucionados mantendo vivo o interesse dfa comunidade científica nesta área. Fundamentalmente, este trabalho aborda o estudo das imagens de face como um problema de reconhecimento de padrões e investiga o domínio de faces, baseado nas projeções vetoriais dessas faces no hiper-espaço, como um problema de estatísica multivariada. A partir desta hipótese, estudam-se quais características visuais são capturadas pelos modelos estatísticos lineares, a capacidade de generalização, e a possibilidade de predizer informações que não necessariamente pertencem a um conjunto de treinamento. Ainda no contexto da estatística multivariada, estudou-se a reconstrução visual dessas informações, cujos resultados comprovaram que um classificador linear pode ser utilizado também para extrir informações e predizer novas. Discute-se ainda o modelo de representação das imagens de faces e como uma alteração poderia ser transferida para uma imagem de face qualquer, de modo que esta incorporasse as novas informações do modelo. Complementando a pesquisa, desenvolveu-se uma nova interpretação das informações discriminantes fornecidas pelas abordagnes de análise de discriminantes lineares, e também uma nova forma de interpretação das componentes principais para fins de classificação. Os resultados deste trabalho indicaram o potencial de representação e generalização nas bases vetoriais geradas pelo PCA e pelo classificador baseado no método de Fisher.