Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: BIBIANO FILHO, Anderson de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Fisica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/49649
Resumo: At zero temperature, thermal fluctuation is eliminated and phase transitions will occur due to quantum fluctuations that arise from the Heisenberg uncertainty principle. Magnetic insulators, described by the Heisenberg model Hamiltonian, are a known class of physical systems that can undergo quantum phase transitions when submitted to a magnetic field. The magnetic field induces the transition by closing energy gaps through the Zeeman effect. Examples of systems that undergo these transitions are the antiferromagnetic spin-1 chain, the antiferromagnetic spin- 1/2 ladder, the ferrimagnetic mixed spin-1 and spin- 1/2 chains and ladders. The presence of a gap in the energy spectrum with zero magnetic field leads to a magnetization plateau in the magnetization curve. We use the density matrix renormalization group to investigate the magnetization curves of the mixed spin-1 and spin- 1/2 ladder, for antiferromagnetic and ferro- magnetic couplings between the ladder legs J⊥. For J⊥ > 0, the ground-state is ferrimagnetic with the total spin equal to 1/3 of the saturation value, in accord with the Lieb-Mattis theorem. The magnetization curve presents a plateau at total magnetization 1/3 of the saturation value, the 1/3-plateau since the ground state has a gap to excitations that increase the total spin by 1 unit. Decreasing J⊥ below zero, the ground state becomes a singlet, but the 1/3-plateau survives down to a critical value J⊥ = Jc. Given that the gap closes with the magnetization fixed, it is a Kosterlitz-Thouless transition type. To determine Jc, we have made a finite-size scale analysis of the plateau width.