Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Jose Pessoa da Silva Júnior, Eglanio |
Orientador(a): |
Domingues Coutinho Filho, Maurício |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/6449
|
Resumo: |
Nesta dissertação apresentamos um estudo numérico sobre o modelo de Heisenberg em trímeros acoplados, motivados pelos compostos químicos de fórmula química A3Cu3(PO4)4 (onde A = Ca, Sr, ou Pb), polímeros que apresentam três íons magnéticos por célula unitária. O foco principal está nas propriedades do estado fundamental, nas excitações de baixa energia e nas propriedades termodinâmicas desse modelo. Para o estudo do estado fundamental e das primeiras excitações utilizamos dois métodos numéricos: o algoritmo de Lanczos de diagonalização exata (DE) e o grupo de renormalização da matriz densidade (sigla em inglês: DMRG). Por outro lado, as propriedades termodinâmicas foram investigadas através do método de Lanczos para temperatura finita (sigla em inglês: FTLM). O hamiltoniano do modelo apresenta dois acoplamentos: o intertrímeros J2 e o intratrímero J1. Estudamos as propriedades físicas do modelo em função de J (J = J2 J1 ), do campo magnético H e da temperatura T. `A campo nulo, o estado fundamental exibe três fases ao variarmos J: uma fase ferrimagnética (FERRI), presente para 0 < J ≤ 1 ; uma fase intermediária com ordem espiral de curto alcance, presente para −0.31 < J < 0; e identificamos uma fase antiferromagnética crítica, caracterizada através do decaimento com lei de potência da função de correlação, para −1 ≤ J < −0.30. Na fase FERRI (0 < J ≤ 1), as primeiras excitações são dois modos de onda de spin ferromagnéticos, um com gap e outro sem gap (um modo de Goldstone), e um modo antiferromagnético responsável pelo aparecimento de um platô na curva de magnetização dependente do campo magnético. Na presença de campo magnético, três fases são encontradas: a fase FERRI, que persiste até um campo crítico finito, uma fase ferromagnética não-saturada e, finalmente, a fase ferromagnética saturada. Neste contexto, a magnetização dependente da temperatura exibe um mínimo característico que foi dito ser uma propriedade universal de sistemas quase-unidimensionais com gap de spin. Por outro lado, a dependência de χ(T)T com T, onde χ é a suscetibilidade magnética, exibe um mínimo característico de ferrimagnetos quase-unidimensionais. Comparando os resulta dos numéricos a dados experimentais encontrados na literatura, foi possível estimar os parâmetros do hamiltoniano de trímeros acoplados que fornecem uma previsão que melhor se ajusta às medidas experimentais. Além disso, o calor específico em função da temperatura exibe pico duplo, o que está diretamente associado ao gap entre as bandas de energia de um mágnon. Na fase espiral (−0.31 < J < 0), o primeiro modo de onda de spin não apresenta gap e exibe características antiferromagnéticas. A função de correlação apresenta decaimento com lei de potência e uma componente espiral. Esta componente é responsável pelo surgimento de um pico no fator de estrutura magnético em um vetor de onda não comensurável com a rede. Na fase antiferromagnética crítica (−1 ≤ J < −0.30), o primeiro modo de onda de spin não apresenta gap, enquanto que a função de correlação exibe características antiferromagnéticas e decaimento com lei de potência. Esta fase também foi estudada através do fator de estrutura magnético. Na fase espiral e antiferromagnética, quando variamos o campo magnético encontramos quatro fases, a saber: uma fase crítica em que a magnetização (M) varia continuamente com o campo, uma fase FERRI induzida pelo campo, com platô em M = 1/6, uma fase ferromagnética não-saturada e finalmente a fase ferromagnética saturada |