Machine learning applications in communication systems decoding

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: CAMPELLO, Rafael Mendes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia Eletrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/45390
Resumo: The usage of machine learning (ML) techniques in different academic and professional fields confirms its theoretical and practical utility. The communications field is no exception. In fact, models that learn from data were already in use prior to the recent advancement in the ML field. This research investigates different kinds of usage that can be done with ML models in three different problems, seeking to show their high flexibility and to present alternative ways of obtaining classical results which employ well established algorithms, or even outperform them in some scenarios. The first problem discusses the so-called Markov-Gaussian channels and compares an ML model with the already common hidden Markov models approach. The second problem deals with non-orthogonal multiple access transmissions and compares an ML model with the usually employed decoding algorithm. The third presents a chaos-based communication system and compares the maximum likelihood decoding to a neural network-based one.