[pt] DECODIFICAÇÃO DE CÓDIGOS DE GEOMETRIA ALGÉBRICA E USO DE REDES NEURAIS PARA CÁLCULO EM CORPO FINITO
Ano de defesa: | 2006 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8517&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8517&idi=2 http://doi.org/10.17771/PUCRio.acad.8517 |
Resumo: | [pt] Este trabalho propõe um algoritmo para decodificação de códigos de geometria algébrica. Usando as propriedades geométricas da curva que define um código de Goppa com distância projetada d, método permite decodificar até [d - 1/ 2] erros em palavra recebida, sem esforço computacional adicional. As curvas de F. K. Schimdt são usada para construir uma nova classe de códigos de geometria algébrica, algumas propriedades destes novos códigos são apresentadas. Redes neurais não ortodoxas do tipo feedforward e não treinadas são usadas para construir circuitos que permitem calcular logaritmos de Zech eficientemente e, portanto, realizar aritmética em corpos finitos sem uso de tabelas. |