Uma abordagem de mineração de dados educacionais para previsão de desempenho a partir de padrões comportamentais de autorregulação da aprendizagem

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: RODRIGUES, Rodrigo Lins
Orientador(a): GOMES, Alex Sandro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/21132
Resumo: O uso crescente dos sistemas de LMS, do inglês Learning Management System, tem gerado um crescente volume de dados provenientes de interações entre professores e alunos. Esse volume de dados, se devidamente explorado, pode fornecer o entendimento de como os alunos autorregulam-se no desenvolver da sua aprendizagem e as relações destas habilidades com o desempenho acadêmico. Diante deste contexto, delimitamos o objetivo de pesquisa desta tese como sendo a modelagem preditiva do desempenho de estudantes por meio de indicadores comportamentais de autorregulação da aprendizagem em ambientes de LMS. O método utilizado nesta pesquisa foi baseado na metodologia CRISP-DM, percorrendo pelas fases de Entendimento do domínio em educação, Entendimento dos dados educacionais, Preparação dos dados, Modelagem, Avaliação do modelo e Implementação da solução em formato de software de visualização de dados. O processo de modelagem foi realizado por meio de dados históricos de uma instituição de ensino superior, armazenados durante um período de sete anos. Como resultado da fase de modelagem, foi realizado o desenvolvimento, avaliação e comparativo entre quatro modelos de previsão, por meio dos algoritmos de Árvore de Decisão (CART), Regressão Logística, SVM e Naive Bayes. O modelo de regressão logística apresentou-se como sendo o mais satisfatório, sendo capaz de predizer o desempenho acadêmico dos estudantes, de acordo com variáveis de autorregulação da aprendizagem, com uma taxa de acurácia de 0,893 e área sobre a curva ROC de 0,9574. Por fim, foi realizada a concepção, implementação e avaliação de uma solução de software, para visualização de dados, capaz de fornecer indícios de previsibilidade do desempenho do aluno a partir do seu registro comportamental armazenado na plataforma de LMS.