Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
AZEVEDO, Rafael Valença |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/12638
|
Resumo: |
Esta dissertação trata de caminhos para modelagem e busca de solução para um problema de otimização da manutenção de forma a tornar o modelo mais aplicável a casos reais. Para tanto, considera um Algoritmo Genético (AG) Multiobjetivo acoplado com Simulação Discreta de Evento (SDE), mais especificamente a técnica de Simulação Monte Carlo (SMC) para resolver problemas de definição simultânea da política de substituição e da quantidade de sobressalentes para sistemas sujeitos a reparos imperfeitos. Uma abordagem multiobjetivo é utilizada, onde a taxa média de custo de manutenção, o número esperado de falhas por ciclo de substituição, a vida residual média e o investimento em sobressalentes devem ser minimizados, enquanto que a disponibilidade deve ser maximizada. O processo de falha-reparo do sistema é modelado por um Processo de Renovação Generalizado (PRG). A metodologia apresentada fornece um conjunto de soluções promissoras que incorporam não apenas o intervalo de substituição por idade, mas também o número máximo de falhas por ciclo e a quantidade de peças sobressalentes que deve ser comprada no início de um horizonte de planejamento. O AG Multiobjetivo e o algoritmo da SDE são validados por um exemplo com solução analítica. Além disso, um exemplo de aplicação é apresentado e uma análise sobre a disponibilidade e o investimento é sugerida para auxiliar o decisor a escolher uma solução do conjunto obtido. |