Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
SILVA, Everson Veríssimo da |
Orientador(a): |
CAVALCANTI, George Darmiton da Cunha |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/18491
|
Resumo: |
Apesar dos avanços em técnicas da Aprendizagem de Máquina, muito esforço ainda é despendido na concepção de um classificador que consiga aprender bem uma dada tarefa. Váriasabordagenssurgiramparaatenuaresseesforçoatravésdacombinaçãodeclassificadores. A combinação de classificadores permite que o projetista do sistema não necessite escolher o classificador mais eficiente dentre vários, nem descartar classificadores que podem possuir informaçãoimportantesobreatarefa. Estratégiasdecombinaçãopermitemqueváriosalgoritmos trabalhem em conjunto a fim de melhorar a precisão de todo o sistema numa dada tarefa. O objetivodestetrabalhoéproporummétododecombinaçãodeclassificadoresqueagregueas vantagensdeduasabordagens: máquinasdecomitêemisturasdeespecialistas. Asmáquinasde comitêvisamcombinarclassificadoresqueresolvempadrõesdetodooespaçodecaracterísticas. Quandocombinados,lidammelhorcomsuperfíciesdedecisãocomplexasqueumclassificador individualmente e são capazes de incorporar novos classificadores mesmo após o uso. Nas MisturasdeEspecialistas,cadaumdosclassificadoreséumespecialistaemumadeterminada áreadoespaçodecaracterísticaseemboraresolvapadrõesdetodooespaçodecaracterísticas,se dedicaaresolverproblemasbemmaissimples,atingindoumdesempenhosuperioremrelaçãoa umclassificadorsópararesolveroproblematodo. OmétodopropostoéchamadodeComitê de Misturas de Especialistas e corresponde a uma máquina de comitês formada por misturas de especialistas. Assim, o método herda a escalabilidade e a tolerância a erros das máquinas decomitêeasimplicidadedetreinamentodasmisturasdeespecialistas. Experimentosforam realizadosparaverificarasuperioridadedocomitêdemisturasdeespecialistassobretrêsfatores de mudanças entre as misturas: técnicas de decomposição de tarefas, número de grupos e características. |