Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
GONÇALVES JÚNIOR, Paulo Mauricio |
Orientador(a): |
BARROS, Roberto Souto Maior de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/12226
|
Resumo: |
Data streams are a recent processing model where data arrive continuously, in large quantities, at high speeds, so that they must be processed on-line. Besides that, several private and public institutions store large amounts of data that also must be processed. Traditional batch classi ers are not well suited to handle huge amounts of data for basically two reasons. First, they usually read the available data several times until convergence, which is impractical in this scenario. Second, they imply that the context represented by data is stable in time, which may not be true. In fact, the context change is a common situation in data streams, and is named concept drift. This thesis presents rcd, a framework that o ers an alternative approach to handle data streams that su er from recurring concept drifts. It creates a new classi er to each context found and stores a sample of the data used to build it. When a new concept drift occurs, rcd compares the new context to old ones using a non-parametric multivariate statistical test to verify if both contexts come from the same distribution. If so, the corresponding classi er is reused. If not, a new classi er is generated and stored. Three kinds of tests were performed. One compares the rcd framework with several adaptive algorithms (among single and ensemble approaches) in arti cial and real data sets, among the most used in the concept drift research area, with abrupt and gradual concept drifts. It is observed the ability of the classi ers in representing each context, how they handle concept drift, and training and testing times needed to evaluate the data sets. Results indicate that rcd had similar or better statistical results compared to the other classi ers. In the real-world data sets, rcd presented accuracies close to the best classi er in each data set. Another test compares two statistical tests (knn and Cramer) in their capability in representing and identifying contexts. Tests were performed using adaptive and batch classi ers as base learners of rcd, in arti cial and real-world data sets, with several rates-of-change. Results indicate that, in average, knn had better results compared to the Cramer test, and was also faster. Independently of the test used, rcd had higher accuracy values compared to their respective base learners. It is also presented an improvement in the rcd framework where the statistical tests are performed in parallel through the use of a thread pool. Tests were performed in three processors with di erent numbers of cores. Better results were obtained when there was a high number of detected concept drifts, the bu er size used to represent each data distribution was large, and there was a high test frequency. Even if none of these conditions apply, parallel and sequential execution still have very similar performances. Finally, a comparison between six di erent drift detection methods was also performed, comparing the predictive accuracies, evaluation times, and drift handling, including false alarm and miss detection rates, as well as the average distance to the drift point and its standard deviation. |