Avaliação criteriosa dos algoritmos de detecção de concept drifts

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: SANTOS, Silas Garrido Teixeira de Carvalho
Orientador(a): BARROS, Roberto Souto Maior de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/17310
Resumo: A extração de conhecimento em ambientes com fluxo contínuo de dados é uma atividade que vem crescendo progressivamente. Diversas são as situações que necessitam desse mecanismo, como o monitoramento do histórico de compras de clientes; a detecção de presença por meio de sensores; ou o monitoramento da temperatura da água. Desta maneira, os algoritmos utilizados para esse fim devem ser atualizados constantemente, buscando adaptar-se às novas instâncias e levando em consideração as restrições computacionais. Quando se trabalha em ambientes com fluxo contínuo de dados, em geral não é recomendável supor que sua distribuição permanecerá estacionária. Diversas mudanças podem ocorrer ao longo do tempo, desencadeando uma situação geralmente conhecida como mudança de conceito (concept drift). Neste trabalho foi realizado um estudo comparativo entre alguns dos principais métodos de detecção de mudanças: ADWIN, DDM, DOF, ECDD, EDDM, PL e STEPD. Para execução dos experimentos foram utilizadas bases artificiais – simulando mudanças abruptas, graduais rápidas, e graduais lentas – e também bases com problemas reais. Os resultados foram analisados baseando-se na precisão, tempo de execução, uso de memória, tempo médio de detecção das mudanças, e quantidade de falsos positivos e negativos. Já os parâmetros dos métodos foram definidos utilizando uma versão adaptada de um algoritmo genético. De acordo com os resultados do teste de Friedman juntamente com Nemenyi, em termos de precisão, DDM se mostrou o método mais eficiente com as bases utilizadas, sendo estatisticamente superior ao DOF e ECDD. Já EDDM foi o método mais rápido e também o mais econômico no uso da memória, sendo superior ao DOF, ECDD, PL e STEPD, em ambos os casos. Conclui-se então que métodos mais sensíveis às detecções de mudanças, e consequentemente mais propensos a alarmes falsos, obtêm melhores resultados quando comparados a métodos menos sensíveis e menos suscetíveis a alarmes falsos.