Seleção de características usando algoritmos genéticos para classificação de imagens de textos em manuscritos e impressos

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Coelho, Gleydson Vilanova Viana
Orientador(a): Cavalcanti, George Darmiton da Cunha
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
kNN
Link de acesso: https://repositorio.ufpe.br/handle/123456789/11965
Resumo: A presença de textos manuscritos e impressos em um mesmo documento representa um grande desafio para os atuais mecanismos de Reconhecimento Óptico de Caracteres. Uma vez que essas classes de texto possuem suas próprias rotinas de reconhecimento, o uso de técnicas que permitam diferenciação entre elas tornou-se indispensável e o bom funcionamento dessas técnicas depende da escolha de características que melhor representem os elementos de texto sobre os quais os classificadores devem atuar. Considerando que na literatura existe uma grande variedade de características utilizadas para este fim, este trabalho objetiva o desenvolvimento de um método que permita, através de um processo de otimização com Algoritmos Genéticos e a partir de um conjunto inicial de 52 características, a seleção de subconjuntos de melhores características que, além de menores que o conjunto original, possibilitem melhoria dos resultados de classificação. Os experimentos foram realizados com classificadores kNN e Redes Neurais MLP a partir de imagens de palavras segmentadas. O método proposto foi avaliado fazendo uso de uma base de dados pública para textos manuscritos e outra criada especificamente para este trabalho para textos impressos. Os resultados dos experimentos mostram que os objetivos propostos foram alcançados. Os Erros Médios de Classificação foram estatisticamente equivalentes para os dois classificadores e uma melhor performance foi obtida com o kNN. A influência dos diferentes tipos de fontes e estilos utilizados nos textos impressos também foi analisada e mostrou que as fontes que imitam textos manuscritos como a "Lucida Handwriting" e "Comic Sans MS" apresentam maiores ocorrências de erros de classificação. Da mesma forma, a maioria dos erros foi percebida nos textos impressos com estilo itálico.