Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
ARAÚJO, Edson Leite |
Orientador(a): |
CAVALCANTI, George Darmiton da Cunha |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/25856
|
Resumo: |
Muitos algoritmos de reconhecimento de padrões são probabilísticos em sua construção e como tal, usam a inferência estatística para determinar o melhor rótulo para uma dada instância a ser classificada. A inferência estatística baseia-se em geral, na teoria de Bayes que por sua vez, utiliza fortemente dos vetores médios, μi, e matrizes de covariância, Σi, de classes existentes nos dados de treinamento. Estes parâmetros são desconhecidos e estimativas são realizadas seguindo vários algoritmos. Entretanto, as estimativas feitas exclusivamente a partir dos dados de treinamento são ainda as mais utilizadas. Por se tratarem de estimativas, os parâmetros μi e Σi sofrem perturbações quando se insere um novo vetor na classe à qual pertencem. Avaliando as perturbações ocorridas em todas as classes simulando uma possível inserção da instância a ser classificada nas mesmas, definimos neste trabalho uma nova regra de decisão a qual atribui a instância de teste à classe em que ocorrer a menor perturbação nos parâmetros μi e Σi ou numa combinação de ambos. Nesta área, várias abordagens são possíveis, entre elas merecem destaque as árvores de decisão, as redes neurais, o aprendizado baseado em instâncias e a máquina de vetores de suporte(SVM). Entretanto, até o momento da escrita deste texto, não foi encontrado na literatura, abordagens que utilizem as perturbações de parâmetros para a classificação de padrões. Em testes realizados inicialmente em dados sintéticos e posteriormente em 21 bancos de dados reais disponíveis no UCI Repository Learning, verificou-se que o classificador baseado em perturbações, o qual foi denominado PerC (Perturbation Classifier), apresentou performance significativamente superior às versões do SVM com kernels polinomiais de graus 2 e 3, e praticamente equivalente aos k-Nearest Neighboor com k=3 e k=5, Naïve Bayes, SVM com kernel gaussiano, CART e as redes neurais MLP, tendo o PerC o maior ranking segundo o teste estatístico de Friedman. Os resultados demonstraram que a abordagem baseada em perturbações são, portanto, úteis para a classificação de padrões. |