Sobre a imagem da aplicação de Gauss de hipersuperfícies tipo-espaço no espaço de Minkowski
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Matematica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/44628 |
Resumo: | Neste trabalho lidaremos com hipersuperfícies tipo-espaço completas imersas no espaço de Lorentz-Minkowski com curvatura média limitada e cuja aplicação de Gauss aponta para o futuro. Estabeleceremos as notações e pré-requisitos necessários para de entendimento do nosso trabalho e apresentaremos alguns conceitos fundamentais e propriedades de Variedades de Lorentz. Destacaremos, em particular, a apresentação de uma ferramenta analítica que será de fundamental importância para a obtenção do resultado principal: o Princípio do máximo de Omori-Yau, que visa suprir a carência da existência de pontos críticos de funções limita- das definidas em Variedades Riemannianas. Consoante a isso, sob uma restrição apropriada da aplicação de Gauss e com uma aplicação adequada da ferramenta analítica citada acima, obteremos uma extensão do teorema de Xin-Aiyama sobre hipersuperfícies tipo-espaço com- pletas imersas com curvatura média limitada em Espaço de Minkowski. Além disso, por fim, apresentaremos um exemplo que motiva a hipótese do nosso Teorema principal. |